Local rings over which all modules have rational Poincaré series
نویسندگان
چکیده
منابع مشابه
Periodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
متن کاملDuality and Rational Modules in Hopf Algebras over Commutative Rings
Let A be an algebra over a commutative ring R. If R is noetherian and A◦ is pure in R, then the categories of rational left A-modules and right A◦-comodules are isomorphic. In the Hopf algebra case, we can also strengthen the Blattner– Montgomery duality theorem. Finally, we give sufficient conditions to get the purity of A◦ in R. © 2001 Academic Press
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملF-rational Rings Have Rational Singularities
It is proved that an excellent local ring of prime characteristic in which a single ideal generated by any system of parameters is tightly closed must be pseu-dorational. A key point in the proof is a characterization of F-rational local rings as those Cohen-Macaulay local rings (R; m) in which the local cohomology module H d m (R) (where d is the dimension of R) have no submodules stable under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1994
ISSN: 0022-4049
DOI: 10.1016/0022-4049(94)90134-1